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When u = 0, the relation L1 = L2 holds and the control u = -x1 - 0.01 x1 will ensure the asymptotic stability 
of the system. When u = 1, we have L1 C L2 and the control will render the system unstable. This can be 
confirmed by considering the corresponding characteristic polynomial. Therefore the law of control ensuring 
the asymptotic stability of a mechanical system in a vacuum will not necessarily guarantee it in a viscous 
medium. 
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An exact general analytic solution is constructed for static membrane equations of equilibrium, in a 

complex form, for a parabolic-logarithmic shell of revolution with variable external load. 

1. BASIC FORMULAS 

STATIC momentless (mean brake) equilibrium of the middle surface of an elastic shell of revolution is 
described, in geographic coordinates z, 0, by the following system of partial differential equations: 

(1.1) 

-- 
t2T2 - rr”T, + rt’Z = 0 (t = 1/l + r’2) 
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HereT , T2 are the internal forces directed, respectively, along the tangents to the parallel and meridian of 
the middle surface of the shell of revolution, S is the shear force, Xi, X2, Z are the components of external 
forces, and r = r(z) is a given meridian of the shell. 

The formulas connecting the forces Ti , T2, S with the stress functions cp (z,0) and +(z, 0) [l] can be written 
for the case Xi = X, = 0 Z = N(z) in the form 

T,=t ++ta$- ( i rtN , T”qLT, s=$- 

Substituting them into (1.1) we obtain the following equations: 

d - 
dz 

acp air, 
3Z 

- P (2) yYjg- = 0, $,-Q&$-O 

(1.2) 

(1.3) 

(1.4) 

p = err”, Q = $ (1.5) 
Equations (1.4) are identical with those discussed in [Z] for the case Xi = Xz = Z = 0, and are equivalent to 

the following two second-order equations: 

8% @Q a+ 9 - - r” * + 2r’ x = 0 as (1.6) 
3% CP’F 

rr” p - (r”)2 -jpy - (r r” + 
acF 

rF’) a_ = 0 

Depending on the sign of the Gaussian curvature, system (1.4) and Eqs (1.6) are either elliptical (r”< 0, 

P>O) or hyperbolic (r”>O, P<O). 

The above equations must be supplemented by the corresponding tangential boundary conditions at the shell 
edges. 

The ordinary differential equation for the function N(z) (1.3) has now been separated from the first of (1. l), 
and the third equation of (1.1) is identically satisfied. 

Integrating (1.3) we obtain the following expression: 

N = Dr”l(rta) (1.7) 

which holds for any sign of the Gaussian curvature of the middle surface. Here D is the constant of integration. 
The function (1.7) determines the external normal pressure (D > 0) or the internal normal pressure (D < 0) 

relative to the shell. 
We note that when D = - 1, function (1.7) is identical with the expression for the Gaussian curvature. 
Let us now consider a parabolic-logarithmic shell of revolution of positive Gaussian curvature (r” < 0)) with 

the meridian 

r = af” In f (f = cz + b) (1.8) 

We place the origin of coordinates at its apex, and direct the axis of symmetry vertically downwards. Let 
0~ z< H where H is the height of the shell. 

An indeterminacy of the type 0.0~) which appears is removed at the point za(cza + b = 0) and this yields the 
relation r(zo) = 0. A throat of radius r. = ab “’ In b appears at the apex z = 0, and the shell (1.8) has two edges 
while its curvature is nearly zero. 

2. GENERAL SOLUTION 

We will seek the solution of system (1.4) with the shell (1.8) in the form [3] 

cp=c~o+Rela(z)W(5)+Sw(5)d51, 4~=~~-l-ImB(4~(6) (2.1) 
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c=SJG@dz+ if3 (2.2) 

Here cpc, 31s are constants and W(c) is an arbitrary analytic function of complex argument. 
The real functions a(z) and p(z) of a single argument z must be sought such that system (1.4) is satisfied for 

any function W(t). To do this, we introduce into it the correspondence derivatives of expressions (2.1). 
We take into account the properties of analytic functions of a complex argument 

Re [if (c)l = --Im f (Q, Im [if (C)l = Re f (5) 

and omit the signs accompanying the real and imaginary parts: 

(JGju.’ + I/P) w + 1/P (cz - 1/poB) W’ = 0 

(1 - Qfi’) w -+ (a - i’PQB) W’ = 0 

The above relations are satisfied for any function W(t) only in the case when two functions o(z) and p(z) 
simultaneously satisfy the following three equations: 

azz--- 
s 

V/PI0 dz, @ = SQ-rdz, a==lfPQ@ (2.3) 

The constants of integration are unimportant and are therefore omitted. 
Let us substitute the functions (1.5) for the shell (1.8) into Eqs (2.3), and integrate the result. This yields 

CL == - ‘12 ln f, p.=-x x = i/(cu2 In f) (2.4) 

and the third equation of (2.3) holds. 
Formulas (2.1), taking relations (2.4) into account, now take the form 

and the complex variable (2.2) will become 

~=1/21nf-+i8 

Formulas (2.5) for the shell (1.8) represent the general solution of system (1.4) and Eqs (1.6) and this can be 
confirmed by direct substitution. 

If we take as the function W(g) the convergent exponential series [3] (here and henceforth the summation in 
n will be carried out from n = 1 to m): 

W = 2 (A, + i&) eno6 j- (C, + i&)eeno6 

where o = 1 for a closed shell (-n 6 8 s rr) and w = n/X for an open shell (0 =S 8 s A, A = const); A,, B, , C, , D, 
(n = 1,2, * * .) are arbitrary constants, then after substituting it into (2.5) and separating the real and imaginary 
parts, we obtain for the case w = 1: 

cp = VP0 + x(&a, - C&J cos tt0 - (B,a, -j- D&In) sin n0, 

9 = qO - x 2 (B,,fn’* $- D,f-“‘*) cos 0 j- (A&” - C,f-“‘2) sin n0 (2.6) 

ctt, = -Y&- (2 -n In f)““, 
1 

fi, ==-----fZ-/-nfnf)f- n/s 
2n 

Here the 4n constants appearing in (2.6) are found with the aid of the usual method of Fourier expansion in 
sinn8 and cosn@ in the interval --71 =G 6~ rr, of the given tangentiai values of the angle fl of the function Jt and cp, 
or, which is the same, of the forces Tl , S at different edges of the shell. 

The forces (1.2), (2.6) obtained in this manner wili serve as initial forces for solving the essentially 
independent problem of displacements, whose geometrical equations are of the same type as system (1.4) [l]. 
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In conclusion, we note that the functions (2.1) can be written in the form of a differential operator 131, 
provided that we put W = F’ (5) where F(c) . IS an arbitrary analytic function of the argument 5 (2.2). 
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THE INTERACTION of two dislocations at a distance from each other, in an anisotropic medium with elastic 
anisotropy of general type is considered and the forces acting on the dislocation defects determined. The 
solution is constructed using the method of multipolar expansions. 

The mechanical properties of crystalline bodies depend to considerable degree on the presence of defects 
within them and their interaction with each other. The energy of interaction between the defects is the basic 
factor determining their mutual distribution and orientation within the crystal. 

The publications available in this field deal either with the determination of the energy at which an isolated 
dislocation loop appears [l-3], with the associated forces acting on an isolated defect [4] and with the stress 
fields near the dislocation loop [5], or with the study of the interaction of dislocation defects between each other 
[6-lo] or with foreign inclusions [ll-131. 

In spite of the fact that the majority of crystals are elastically anisotropic, the investigations leading to the 
determination of the energy of interaction between the dislocations were carried out, basically, for isotropic of 
transversally isotropic (hexagonal~ crystals. This can be explained by the need to use the fundamenta1 solutions 
of the equations of equilibrium, whose derivatives are used, in the majority of cases, to express the energy of 
interaction between the dislocations. 

The fundamental solutions of the equations of equilibrium are constructed in closed form for isotropic media 
(Kelvin solution) and for a subclass of o~ho~op~c materials, which includes transversally isotropic media, in 
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